Make a dummy index column

In [15]:
import pandas as pd

Get a suitable data set and put it in a DataFrame.

In [16]:
from sklearn.datasets import load_boston
boston = load_boston()
df = pd.DataFrame(boston.data, columns=boston['feature_names'])

Add a dummy index column.

In [17]:
df.insert(0, 'ID', 100000 + df.index)
In [13]:
df.head(10)
Out[13]:
ID CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT
0 100000 0.00632 18.0 2.31 0.0 0.538 6.575 65.2 4.0900 1.0 296.0 15.3 396.90 4.98
1 100001 0.02731 0.0 7.07 0.0 0.469 6.421 78.9 4.9671 2.0 242.0 17.8 396.90 9.14
2 100002 0.02729 0.0 7.07 0.0 0.469 7.185 61.1 4.9671 2.0 242.0 17.8 392.83 4.03
3 100003 0.03237 0.0 2.18 0.0 0.458 6.998 45.8 6.0622 3.0 222.0 18.7 394.63 2.94
4 100004 0.06905 0.0 2.18 0.0 0.458 7.147 54.2 6.0622 3.0 222.0 18.7 396.90 5.33
5 100005 0.02985 0.0 2.18 0.0 0.458 6.430 58.7 6.0622 3.0 222.0 18.7 394.12 5.21
6 100006 0.08829 12.5 7.87 0.0 0.524 6.012 66.6 5.5605 5.0 311.0 15.2 395.60 12.43
7 100007 0.14455 12.5 7.87 0.0 0.524 6.172 96.1 5.9505 5.0 311.0 15.2 396.90 19.15
8 100008 0.21124 12.5 7.87 0.0 0.524 5.631 100.0 6.0821 5.0 311.0 15.2 386.63 29.93
9 100009 0.17004 12.5 7.87 0.0 0.524 6.004 85.9 6.5921 5.0 311.0 15.2 386.71 17.10

Another way to do it, is to reset the index.

In [18]:
df = pd.DataFrame(boston.data, columns=boston['feature_names'])

df = df.reset_index()
In [19]:
df.head(10)
Out[19]:
index CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT
0 0 0.00632 18.0 2.31 0.0 0.538 6.575 65.2 4.0900 1.0 296.0 15.3 396.90 4.98
1 1 0.02731 0.0 7.07 0.0 0.469 6.421 78.9 4.9671 2.0 242.0 17.8 396.90 9.14
2 2 0.02729 0.0 7.07 0.0 0.469 7.185 61.1 4.9671 2.0 242.0 17.8 392.83 4.03
3 3 0.03237 0.0 2.18 0.0 0.458 6.998 45.8 6.0622 3.0 222.0 18.7 394.63 2.94
4 4 0.06905 0.0 2.18 0.0 0.458 7.147 54.2 6.0622 3.0 222.0 18.7 396.90 5.33
5 5 0.02985 0.0 2.18 0.0 0.458 6.430 58.7 6.0622 3.0 222.0 18.7 394.12 5.21
6 6 0.08829 12.5 7.87 0.0 0.524 6.012 66.6 5.5605 5.0 311.0 15.2 395.60 12.43
7 7 0.14455 12.5 7.87 0.0 0.524 6.172 96.1 5.9505 5.0 311.0 15.2 396.90 19.15
8 8 0.21124 12.5 7.87 0.0 0.524 5.631 100.0 6.0821 5.0 311.0 15.2 386.63 29.93
9 9 0.17004 12.5 7.87 0.0 0.524 6.004 85.9 6.5921 5.0 311.0 15.2 386.71 17.10